Publications

Patents



Dutt V., Kumar P., Sihag P., Mali N., Pathania A., and Uday K.V. A low cost, sub-surface
iot framework for landslide monitoring and warning, January 12 2021. Patent Application
202111001337, New Delhi, Patent Office Dwarka New Delhi 110078.


Dutt V., Kumar P., Saini T., Pathania A., Rana D. C., and Attri S. C. Low-power, low-cost
air-quality monitoring, predicting & warning system, November 28 2019. Patent Application
201911048755, New Delhi, Patent Office Dwarka New Delhi 110078.


Dutt V., Kumar P., Sihag P., Agrawal S., Mali N., Pathania A., and Uday K.V. Smart iot
based test-bed system for lab scale landslide monitoring experiment, October 22 2018. Patent
Application 201813039735, New Delhi, Patent Office Dwarka New Delhi 110078.




Journal Articals


2021


Thakur V., Robinson K., Oguz E., Depina I., Pathania A., Kumar P., Chaturvedi P., Uday
K.V, and Dutt V. (2021). Early Warning of Water-Triggered Landslides. Indian Geotechnical
Conference 2019. Lecture Notes in Civil Engineering, volume 144. DOI:10.1007/978-981-33-
6590-2_11.


Kumar P., Sihag P., Chaturvedi P., Uday. K.V., and Dutt V. (2021). BS-LSTM: An Ensemble
Recurrent Approach to Forecasting Soil Movements in the Real World. Frontiers in Earth Science,
volume 9, page 716. Frontiers. DOI:10.3389/feart.2021.696792.


Kumar P., Sihag P., Sharma A., Pathania A., Singh R., Chaturvedi P., Mali N., Uday. K.V., and
Dutt V. (2021). Prediction of Real-World Slope Movements via Recurrent and Non-recurrent
Neural Network Algorithms: A Case Study of the Tangni Landslide. Indian Geotechnical Journal,
SI: Landslides: Forecasting, Assessment and Mitigation, volume 51, page 788–810. Springer.
DOI:10.1007/s40098-021-00529-4.


Pathania A., Kumar P., Priyanka, Maurya A., Uday K.V, and Dutt V. (2021). Development of an
Ensemble Gradient Boosting Algorithm for Generating Alerts About Impending Soil Movements.
In: Gopi, E.S. (eds) Machine Learning, Deep Learning and Computational Intelligence for
Wireless Communication. Lecture Notes in Electrical Engineering, volume 749, pages 365–379.
DOI:10.1007/978-981-16-0289-4_28.


2019


Sharma R., Saini T., Kumar P., Pathania A., Chitineni K., Chaturvedi P., and Dutt V. (2020).
An Online Low-Cost System for Air Quality Monitoring, Prediction, and Warning. Distributed
Computing and Internet Technology. ICDCIT 2020. Lecture Notes in Computer Science, volume
11969, pages 311–324. Springer. DOI:10.1007/978-3-030-36987-3_20.

 



Book Chapter Publications


2021


Kumar P., Sihag P., Pathania A., Chaturvedi P., Uday. K.V., and Dutt V. (2021). Comparison
of Moving-Average, Lazy, and Information Gain Methods for Predicting Weekly Slope-Movements:
A Case-Study in Chamoli, India. In: Nicola Casagli, Veronica Tofani, Kyoji Sassa, Peter T.
Bobrowsky, and Kaoru Takara, editors, Understanding and Reducing Landslide Disaster Risk.
WLF 2020. ICL Contribution to Landslide Disaster Risk Reduction, volume 3, pages 321–
330. Springer International Publishing, Cham, 2021. DOI:10.1007/978-3-030-60311-3_38.
ISBN:978-3-030-60311-3.



Conference Publications


2020


Kumar P., Sihag P., Pathania A., Agarwal S., Mali N., Singh R., Chaturvedi P., Uday K.V., and
Dutt V. (2020). Predictions of Weekly Slope Movements Using Moving-Average and Neural
Network Methods: A Case Study in Chamoli, India. In: Nagar A., Deep K., Bansal J., and
Das K., editors, Soft Computing for Problem Solving 2019. Advances in Intelligent Systems and
Computing, volume 1139, pages 67–81. Springer. DOI:10.1007/978-981-15-3287-0_6.


Pathania A., Kumar P., Sihag P., Singh R., Chaturvedi P., Uday K.V., and Dutt V. (2020).
A lowcost, sub-surface iot framework for landslide monitoring, warning, and prediction. In:
In Proceedings of 2020 International conference on advances in computing, communication,
embedded and secure systems. Springer, Cham.


Pathania A., Kumar P., Sihag P., Maurya A., Kumar M., Singh R., Chaturvedi P., Uday K.V.,
and Dutt V. (2020). Predictions of Soil Movements using Persistence, Auto-regression, and
Neural network models: A case-study in Mandi, India. In: Bansal J., editor, International
Conference on Paradigms of Computing, Communication and Data Sciences (PCCDS-2020).
Springer. DOI:10.1504/IJSI.2022.10043800.


2019


Kumar P., Sihag P., Pathania A., Agarwal S., Mali N., Singh R., Chaturvedi P., Uday K.V., and
Dutt V. (2019). Predictions of Weekly Soil Movements Using Moving-average and Support-vector
Methods: A Case-study in Chamoli, India. In: Correia A., Tinoco J., Cortez P., and Lamas L.,
editors, Information Technology in Geo-Engineering. ICITG 2019. Springer Series in Geomechanics
and Geoengineering, pages 393–405. Springer. DOI:10.1007/978-3-030-32029-4_34.


Kumar P., Sihag P., Pathania A., Agarwal S., Mali N., Chaturvedi P., Singh R., Uday K.V., and
Dutt V. (2019). Landslide Debris-Flow Prediction using Ensemble and Non-Ensemble MachineLearning Methods: A case-study in Chamoli, India. In: O. Valenzuela, Rojas F., Pomares H., and Rojas I., editors, Contributions to Statistics: Proceedings of the 6th International
Conference on Time Series and Forecasting (ITISE), Granda, Spain, pages 614–625. Springer.
ISBN:978-84-17970-78-9.


Pathania A., Kumar P., Kesri J., Sihag P., Agarwal S., Mali N., Singh R., Chaturvedi P.,
Uday K.V., and Dutt V. (2019). Reducing power consumption of weather stations for landslide
monitoring. In: Correia A., Tinoco J., Cortez P., and Lamas L., editors, Information Technology
in Geo-Engineering. ICITG 2019. Springer Series in Geomechanics and Geoengineering, pages
144–158. Springer. DOI:10.1007/978-3-030-32029-4_13.



Under Review or Revision


Kumar P., Priyanka P., Dhanya J., Uday K.V., and Dutt V. (2022). Development and Comparison of Univariate and Multivariate Models for Soil Movement Predictions. Under Review.